1.

A student investigated the acceleration of a trolley.

The diagram below shows how the student set up the apparatus.

(a) Before attaching the mass holder the student placed the trolley at the top of the runway. The trolley rolled down the runway without being pushed.

What change to the apparatus in the diagram could be made to prevent the trolley from starting to roll down the runway?

Tick (\checkmark) one box.

Move the wooden block to the left.

Shorten the length of the runway.

Use a taller wooden block.

(1)

(b) The student attached the mass holder to the string.

The string rubbed along the edge of the bench as the mass holder fell to the floor.

Suggest what the student could do to prevent the string from rubbing.

The light gate and data logger were used to determine the acceleration of the trolley.

The student increased the resultant force on the trolley and recorded the acceleration of the trolley.

The table below shows the results.

Resultant force in newtons	Acceleration in m/s ²	
0.05	0.08	
0.10	0.18	
0.15	0.25	
0.20	0.32	
0.25	0.41	

The graph below is an incomplete graph of the results.

Resultant force in newtons

- (c) Complete the graph.
 - Choose a suitable scale for the x-axis.
 - Plot the results.
 - Draw a line of best fit.

(4)

- (d) Describe the relationship between the resultant force on the trolley and the acceleration of the trolley.
 - (1)
- (e) Describe how the investigation could be improved to reduce the effect of random errors.

Write down the equation that links acceleration (a), mass (m) and resultant force (F). (f)

		- (1)
(g)	The resultant force on the trolley was 0.375 N.	(1)
	The mass of the trolley was 0.60 kg.	
	Calculate the acceleration of the trolley.	
	Give your answer to 2 significant figures.	
		-
		-
		-
		-
	Acceleration (2 significant figures) = m/s^2	- <u>2</u>
	(T	(4) otal 14 marks)
2 Fiç	gure 1 below shows a child on a playground toy.	,
2.	Figure 1	
	Springs	

Explain what is meant by 'elastically deformed'.

A student investigated the relationship between the force applied to a spring and the extension of the spring.

Figure 2 below shows the results.

Figure 2

(2)

(b) Describe a method the student could use to obtain the results given in **Figure 2**.

You should include a risk assessment for **one** hazard in the investigation.

Your answer may include a diagram.

(c) Which equation links extension (e), force (F) and spring constant (k).

Tick (\checkmark) one box.

(1)

	Spring constant =	N/m
The student concluded:		
'The extension of the spring is dir	rectly proportional to the force applied to th	e spring.'
Describe how Figure 2 supports	the student's conclusion.	
The student repeated the investion N/m.	gation using a different spring with a spring	g constant of 13
Calculate the elastic potential en cm.	ergy of the spring when the extension of t	he spring was 20
Use the Physics Equations Shee	et.	

(4)

(1)

a)	Explain the effect of two other factors on the	braking distance of a car.
	Do not refer to speed in your answer.	
(b)	Which equation links acceleration (<i>a</i>), mass ((<i>m</i>) and resultant force (<i>F</i>).
(b)	Which equation links acceleration (<i>a</i>), mass of Tick (√) one box.	(<i>m</i>) and resultant force (<i>F</i>).
(b)	Which equation links acceleration (<i>a</i>), mass of Tick (√) one box. resultant force = mass × acceleration	(<i>m</i>) and resultant force (<i>F</i>).
(b)	Which equation links acceleration (<i>a</i>), mass of Tick (\checkmark) one box. resultant force = mass × acceleration resultant force = mass × acceleration ²	(<i>m</i>) and resultant force (<i>F</i>).
(b)	Which equation links acceleration (<i>a</i>), mass of Tick (\checkmark) one box. resultant force = mass × acceleration resultant force = mass × acceleration ² resultant force = $\frac{mass}{acceleration^2}$	(<i>m</i>) and resultant force (<i>F</i>).

(c)	The mean braking force on a car is 7200 N	Ι.		
	The car has a mass of 1600 kg.			
	Calculate the deceleration of the car.			
		Deceleration =	m/s ²	
				(3)

(2)

(d) **Figure 1** below shows how the thinking distance and braking distance for a car vary with the speed of the car.

Determine the stopping distance when the car is travelling at 80 km/h.

Stopping distance = _____ m

Figure 2 below shows part of the braking system for a car.

Figure 2

Figure 1

(e) Which equation links area of a surface (*A*), the force normal to that surface (*F*) and pressure (*p*)?

Tick (\checkmark) one box.

(f) When the brake pedal is pressed, a force of 60 N is applied to the piston.

The pressure in the brake fluid is 120 000 Pa.

Calculate the surface area of the piston.

Give your answer in standard form.

Give the unit.

	_
	_
	-
	-
	-
	-
	-
	-
Surface area (in standard form) = Unit	
	(

(5) (Total 16 marks)

Figure 1 shows a cyclist on a bicycle.

The cyclist is moving at a constant velocity.

Arrows **A** and **B** represent the horizontal forces acting on the bicycle and cyclist.

(a) What is force **A**?

Tick (\checkmark) one box.

Air resistance

Friction

Tension

Upthrust

(b)	What is force B ?
-----	--------------------------

Tick (/) one	box.
--------	--------	------

Air resistance	
Magnetic	
Tension	
Upthrust	

What is the relationship between force A and force B when the cyclist travels at a constant (c) velocity?

Tick (\checkmark) **one** box.

(d) The cyclist applies a force of 150 N to one of the bicycle pedals.

Figure 2 shows the distance between the force applied and the pivot.

Calculate the moment about the pivot caused by the force applied to the pedal in Figure 2.

Use the equation:

moment of a force = force × distance

Moment = _____ N m

(2)

(1)

(e) **Figure 3** shows how the pedal is connected to the back wheel of the bicycle.

Back wheel

Complete the sentence.

Choose the answer from the box.

The force from the cyclist pushing down on the pedal is transmitted to the back wheel by the _____.

Figure 4 shows how the velocity of the cyclist changes during a journey.

Figure 4

(f) What is the change in velocity of the cyclist in the first 20 seconds of the journey?

Tick (\checkmark) one box.

5.2 m/s	
5.4 m/s	
5.6 m/s	
5.8 m/s	

(g) Determine the acceleration of the cyclist during the first 20 seconds of the journey.

Use your	answer	from	part	(f)
----------	--------	------	------	-----

Use the equation:

Acceleration of the cyclist = m/s^2

(2)

(h) Complete the sentence.

Choose the answer from the box.

deceleration	speed	velocity	

Between 30 and 40 seconds the cyclist moves with a constant	nt
---	----

(1)

5.

(i) The cyclist travels from home to school.

Figure 5 shows the route the cyclist followed.

Draw an arrow on Figure 5 to show the displacement of the cyclist.

(1) (Total 11 marks)

A student investigated how the angle of a ramp affects the force required to hold a trolley stationary on the ramp.

Figure 1 shows the equipment used.

(a) Measure the angle Y in Figure 1

Angle Y = _____ degrees

Figure 2 shows the newtonmeter before the investigation started.

Figure 2

(b) What type of error is shown on the newtonmeter in **Figure 2**?

Tick (\checkmark) one box.

Human error	
Random error	
Zero error	

(c) How can this error be corrected after the measurements have been taken?
 Tick (✓) one box.

Add 0.5 N to each measurement

Multiply each measurement by 0.5 N

(1)

The table below shows the corrected results.

Angle of ramp in degrees	Force in newtons
5	0.9
10	1.7
15	2.6
20	3.4
25	4.2
30	5.0

Figure 3 is an incomplete graph of the results

(d) Plot the missing results from the table above on **Figure 3**.

Figure 3

(e) **Figure 4** shows a person in a wheelchair using two different ramps to enter a van.

Figure 4

The ramps are at different angles to the ground.

Explain **one** advantage of using the long ramp compared with using the short ramp.

(f) A force of 160 N is used to move the wheelchair up the long ramp.

The ramp is 2.5 m long.

Calculate the work done to move the wheelchair up the ramp.

Use the equation:

work done = force × distance

______ Work done = ______ J (2)

(Total 9 marks)

(2)

A student dropped a piece of modelling clay into oil.

The diagram below shows the modelling clay just before it was dropped into the oil.

(a) What was the distance fallen by the modelling clay?

Tick (\checkmark) one box.

from A to C	
from A to D	
from B to C	
from B to D	

(b) What measuring instrument should be used to measure the distance fallen?

The student dropped four pieces of modelling clay, each with a different shape.

For each piece the student measured the time taken to fall the same distance through the oil.

(1)

(1)

(1)

(c) The student removed each piece of modelling clay from the oil before dropping the next piece.

Suggest **one** reason why.

The student repeated the measurements and calculated mean values.

The table below shows the results.

Shana	Time taken in seconds			
Shape	Drop 1	Drop 2	Drop 3	Mean
Sphere	47	38	41	42
Cube	68	49	57	58
Cylinder	34	37	34	x
Cone	29	23	26	26

(d) Calculate value **X** in the table above.

X = ______ S

(e) Each piece of modelling clay had the same mass.

Which shape in the table above had the smallest resistive force acting against it as it fell?

Tick (\checkmark) one box.

Give **one** reason for your answer.

Cone	
Cube	
Cylinder	
Sphere	
Reason	

(f) How would the time taken to fall change if the modelling clay was dropped through air instead of through oil?

Tick (\checkmark) one box.

Time through air would be less.

Time through air would be more.

Time through air would be the same.

(1)

(2)

(g)	The mass of a piece of modelling of	xlay was 0.050 kg.	
	gravitational field strength = 9.8 N/	kg	
	Calculate the weight of the piece of	of modelling clay.	
	Use the equation:		
	weight = mas	ss × gravitational field strength	
		Weight =N	(2)
(h)	Weight causes the modelling clay	to fall through the oil.	
	Weight is a non-contact force.		
	Which of the following are also not	n-contact forces?	
	Tick (\checkmark) two boxes.		
	Air resistance		
	Electrostatic force		
	Friction		
	Magnetic force		
	Tension		
			(2)

(Total 12 marks)

(a) An aircraft travels at a constant velocity.

7.

How is the velocity of the aircraft different to the speed of the aircraft?

(b) The diagram below shows one of the engines on the aircraft.

Air is taken into the front of the engine and pushed out of the back of the engine.

Explain the effect this has on the engine.

(c) The graph below shows a distance-time graph for the aircraft.

(3)

(d) Write down the equation that links acceleration (*a*), change in velocity (Δv) and time taken (*t*).

Speed = _____ m/s

(e) At a different stage of the flight, the aircraft was travelling at a velocity of 250 m/s.

The aircraft then decelerated at 0.14 m/s^2 .

Calculate the time taken for the aircraft to decelerate from 250 m/s to 68 m/s.

Time = ______ s (4) (f) Write down the equation that links distance (s), force (F) and work done (W). (1) When the aircraft landed, it travelled 2000 m before stopping. (g) The work done to stop the aircraft was 140 000 000 J. Calculate the mean force used to stop the aircraft.

Mean force = _____ N

Figure 1 shows an athlete on starting blocks waiting to start a 100 metre race.

(a) Complete the sentence.

Choose the answer from the box.

equal to	greater than	less than

The force from the athlete pushing backwards on the starting blocks

is ______ the force from the starting

blocks pushing forwards on the athlete.

- - Three parts of the distance-time graph are labelled J, K and L. (b)

Draw one line from each of the labels to the correct description of the athlete's motion for that part of the graph.

Forces (F)		PhysicsAr	ndMathsTi	utor.com
	(c)	What distance does the athlete travel after the end of the race before stopping?		
		Distance = n	n	
				(1)
	(d)	Calculate the average speed of the athlete between the start and finish of the 100 n race.	netre	
		Use the equation:		
		average speed = $\frac{\text{distance travelled}}{\text{time taken}}$		
		Average speed = m/s	S	(2)
	(e)	The athlete runs faster than a typical person		(2)
	(0)	What is the average running speed of a typical person in metros per second?		
		what is the average fullning speed of a typical person in metres per second?		
		Tick (✓) one box.		
		1.5		
		3.0		
		4.5		
		6.0		

(1) (Total 7 marks) 9.

The following statements describe parts of a short train journey between two railway stations.

Part A: The train accelerates at a constant rate from 0 m/s to 20 m/s in 40 s

Part B: The train travels at a constant velocity for 260 s

Part C: The train decelerates at a constant rate coming to a stop in 60 s

(a) During which part of the journey is the resultant force on the train zero?

Tick (\checkmark) one box.

(b) **Figure 1** shows part of the velocity-time graph for the train journey.

Complete Figure 1 showing part B and part C of the train journey.

Figure 1

(3)

(1)

(c) Write down the equation which links acceleration, change in velocity and time taken.

Figure 2 shows a simple device that can be used as a weighing scale.

Figure 3 shows the device being used to measure a quantity of rice.

The weight of the device is balanced by the weight of the rice and basket.

(b) The weight of the device acts through the point labelled **X**.

What is point **X** called?

Tick (\checkmark) one box.

Centre of balance	
Centre of mass	
Centre of weight	

(1)

(c) How does **Figure 3** show that the weight of the device is balanced by the weight of the rice and basket?

PhysicsAndMathsTutor.com

(d)	The basket can hang from different points on the device.	
	Where should the basket hang to measure the largest quantity of rice?	
	Tick (√) one box.	
	P Q R S	
(e)	Write down the equation which links distance, force and moment of a force.	(1)
(6)		(1)
(†)	In Figure 3 , the weight of the device causes an anticlockwise moment of 0.15 Nm about the pivot.	
	The weight of the rice and basket acts 0.06 m from the pivot.	
	Calculate the weight of the rice and basket.	
	Weight of rice and basket = N	(3)
(g)	Write down the equation which links gravitational field strength, mass and weight.	

(1)

Forces (F)		PhysicsAl	ndMathsTutor.com
	(h)	The basket has a mass of 0.04 kg	
		gravitational field strength = 9.8 N/kg	
		Calculate the mass of rice in the basket.	
			_
			_
		Mass = k	g
		((3) Fotal 12 marks)
11.	(a)	The driver of a vehicle sees a hazard on the road.	
		The driver uses the brakes to stop the vehicle.	
		Explain the factors that affect the distance needed to stop a vehicle in an emergence	у.
			_
			_
			_
			_
			_
			_
			_
			—
			_
			_
			(6)
	(b)	Write down the equation which links distance, force and work done.	

	(c)	The work done by the braking force to stop a vehicle was 900 000 J	
		The braking force was 60 000 N	
		Calculate the braking distance of the vehicle.	
		Braking distance = m	(3)
	(d)	The greater the braking force, the greater the deceleration of a vehicle.	
		Explain the possible dangers caused by a vehicle having a large deceleration when it is braking.	
			(2)
		(Total	12 marks)
12.	Figu	.re 1 shows four blocks of different materials floating on water.	
	The	four blocks are the same volume.	
		Figure 1	

(1)

(a) Which of the blocks has the smallest weight?

Tick **one** box.

Figure 2 shows a lifebuoy next to a deep swimming pool.

(b) The lifebuoy has a mass of 2.5 kg.

gravitational field strength = 9.8 N/kg

Calculate the weight of the lifebuoy.

Use the equation:

weight = mass x gravitational field strength

Weight = _____

(2)

_ N

(c) When thrown into the water the lifebuoy floats. The two forces acting on the lifebuoy are the weight of the lifebuoy downwards and upthrust upwards.

How big is the upthrust on the lifebuoy compared to the weight of the lifebuoy?

Tick **one** box.

The upthrust is greater than the weight.

The upthrust is less than the weight.

The upthrust is the same as the weight.

- (d) Write down the equation which links acceleration, mass and resultant force.
- (e) A rope is used to pull the lifebuoy to the side of the swimming pool.

A resultant force of 4.0 N acts on the lifebuoy.

The mass of the lifebuoy is 2.5 kg.

Calculate the acceleration of the lifebuoy.

Acceleration = _____ m/s²

(3)

(1)

(1)

(Total 8 marks)

The diagram below shows a fork-lift truck lifting a heavy crate.

(a) The crate weighs 11 500 N and is lifted vertically 2.60 m.

Calculate the work done to lift the crate.

Use the equation:

work done = force × distance

Work done = _____ J

(2)

The weight of the crate causes a clockwise moment of 13 800 Nm about the centre of the front wheel of the fork-lift truck.

(b) The weight of the fork-lift truck and driver cause an anticlockwise moment.

What is the minimum size of the anticlockwise moment needed so that the fork-lift truck does **not** topple over?

(c) Write down the equation which links distance, force and moment of a force.

(1)

 (a) The water exerts a force of 27 N on the bottom of the container. The cross-sectional area of the bottom of the container is 0.009 m².

Calculate the pressure exerted by the water on the bottom of the container.

Use the equation:

$$pressure = \frac{force}{area}$$

Choose the unit.

			1
kg/m³	N/m	Pa	
]
	Pressure =		Unit =

The container is put under running water from a tap and the three rubber stoppers removed.

Figure 2 shows the path taken by the water escaping from the top and bottom holes.

Figure 2

(b) Complete **Figure 2** to show the path taken by the water escaping from the centre hole.

(c) What can be concluded from Figure 2 about the pressure in a liquid?

(1)

(d) **Figure 3** shows a simple model of a liquid.

When a force pushes down on the marbles, the marbles push the sides and bottom of the container outwards.

Marbles - represent liquid particles

What can be concluded from this model about the pressure in a liquid?

(1) (Total 6 marks)

15.

A student carried out an investigation to determine the spring constant of a spring.

The table below gives the data obtained by the student.

Force in N Extension in c	
0	0.0
2	3.5
4	8.0
6	12.5
8	16.0
10	20.0

(a) Describe a method the student could have used to obtain the data given in the table above.

Your answer should include any cause of inaccuracy in the data.

Your answer may include a labelled diagram.

(6)

(b) The student measured the extension for five different forces rather than just measuring the extension for one force.

Suggest why.

The diagram below shows some of the data obtained by the student.

(c) Complete the diagram above by plotting the missing data from the table above.

Draw the line of best fit.

The table above is repeated here to help you answer this question.

Force in N	Extension in cm
0	0.0
2	3.5
4	8.0
6	12.5
8	16.0
10	20.0

(d) Write down the equation that links extension, force and spring constant.

(2)

(e)

PhysicsAndMathsTutor.com

Spring constant = N/m	
Hooke's Law states that: 'The extension of an elastic object is directly proportional to the force applied, provided limit of proportionality is not exceeded.'	
The student concluded that over the range of force used, the spring obeyed Hooke's La	aw.
Explain how the data supports the student's conclusion.	

Calculate the spring constant of the spring that the student used.

A student suspended a spring from a laboratory stand and then hung a weight from the spring.

Figure 1 shows the spring before and after the weight is added.

(a) Which distance gives the extension of the spring?

(1)

(b) The student used the spring, a set of weights and a ruler to investigate how the extension of the spring depended on the weight hanging from the spring.

Figure 2

Figure 2 shows that the ruler is in a tilted position and not upright as it should be.

How would leaving the ruler tilted affect the weight and extension data to be recorded by the student?

Use answers from the box to complete each sentence.

Each answer may be used once, more than once or not at all.

greater than	the same as	smaller than	

The weight recorded by the student would be ______ the actual weight.

The extension recorded by the student would be ______ the actual extension of the spring.

(c) The student moves the ruler so that it is upright and not tilted.

The student then completed the investigation and plotted the data taken in a graph.

The student's graph is shown in **Figure 3**.

Use **Figure 3** to determine the additional force needed to increase the extension of the spring from 5cm to 15cm.

- (1)
- (d) What can you conclude from Figure 3 about the limit of proportionality of the spring?

(1)

(e) The student repeated the investigation with three more springs, K, L and M.

All three springs show the same relationship between the weight and extension.

What is that relationship?

Tick **one** box.

The extension increases non-linearly with the increasing weight.

The extension is inversely proportional to the weight.

The extension is directly proportional to the weight.

PhysicsAndMathsTutor.com

(f) Which statement, **A**, **B** or **C**, should be used to complete the sentence?

Write the correct letter, **A**, **B** or **C**, in the box below.

- A a lower spring constant than
- **B** the same spring constant as
- **C** a greater spring constant than

From Figure 4 it can be concluded that spring M has

the other two springs.

(1) (Total 7 marks)

17. Figure 1 shows a skier using a drag lift.

The drag lift pulls the skier from the bottom to the top of a ski slope.

The arrows, A, B, C and D represent the forces acting on the skier and her skis.

(a) Which arrow represents the force pulling the skier up the slope?

Tick **one** box.

(b) Which arrow represents the normal contact force?

Tick one box.	
Α	
В	
C	
D	

(1)

(2)

(c) The drag lift pulls the skier with a constant resultant force of 300N for a distance of 45 m.

Use the following equation to calculate the work done to pull the skier up the slope.

work done = force × distance

Work done = _____ J

(d) At the top of the slope the skier leaves the drag lift and skis back to the bottom of the slope.

Figure 2 shows how the velocity of the skier changes with time as the skier moves down the slope.

After 50 seconds the skier starts to slow down.

The skier decelerates at a constant rate coming to a stop in 15 seconds.

Draw a line on **Figure 2** to show the change in velocity of the skier as she slows down and comes to a stop.

(2) (Total 6 marks) Two children, A and B, are sitting on a see-saw, as shown in the figure below.

18.

The see-saw is balanced.

(a) Use the following equation to calculate the moment of child **B** about the pivot of the see-saw.

moment of a force = force × distance

Give your answer in newton-metres

Moment = _____ Nm

(2)

(b) Use the idea of moments to explain what happens when child **B** moves closer to the pivot.

(3) (Total 5 marks)

The figure below shows the forces acting on a child who is balancing on a pogo stick.

The child and pogo stick are not moving.

(a) The downward force of the child on the spring is equal to the upward force of the spring on the child.

This is an example of which one of Newton's Laws of motion?

Tick **one** box.
First Law
Second Law
Third Law

(b) Complete the sentence.

Use an answer from the box.

elastic potential	gravitational potential	kinetic
The compressed spring stores		_ energy.

(1)

20.

The child has a weight of 343 N. (C) Gravitational field strength = 9.8 N / kg Write down the equation which links gravitational field strength, mass and weight. (1) (d) Calculate the mass of the child. Mass = _____ kg (3) The weight of the child causes the spring to compress elastically from a length of 30cm to a (e) new length of 23cm. Write down the equation which links compression, force and spring constant. (1) (f) Calculate the spring constant of the spring. Give your answer in newtons per metre. Spring constant = _____ N / m (4) (Total 11 marks) The figure below shows the horizontal forces acting on a car. 800 N 🗲 ♦ 800 N

Which one of the statements describes the motion of the car? (a)

	Tick one box.	
	It will be slowing down.	
	It will be stationary.	
	It will have a constant speed.	
	It will be speeding up.	
		(1)
(b)	During part of the journey the car is driven at a constant speed for five minutes.	
	Which one of the equations links distance travelled, speed and time?	
	Tick one box.	
	distance travelled = speed + time	
	distance travelled = speed × time	
	distance travelled = speed - time	
	distance travelled = speed ÷ time	
		(1)
(c)	During a different part of the journey the car accelerates from 9 m/s to 18 m/s in 6 s.	
	Use the following equation to calculate the acceleration of the car.	
	acceleration = time taken	

(d) Which equation links acceleration, mass and resultant force?

	Tick one box.	
	resultant force = mass + acceleration	
	resultant force = mass × acceleration	
	resultant force = mass - acceleration	
	resultant force = mass ÷ acceleration	
(e)	The mass of the car is 1120 kg. The mass of the driver is 80 kg. Calculate the resultant force acting on the car and driver while accelerating.	(1)
	Resultant force =N	(2)
(f)	Calculate the distance travelled while the car is accelerating.	
	Use the correct equation from the Physics Equation Sheet.	
	 Distance =m	
		(3)

(g) A car driver sees a fallen tree lying across the road ahead and makes an emergency stop.

The braking distance of the car depends on the speed of the car.

For the same braking force, explain what happens to the braking distance if the speed doubles.

You should refer to kinetic energy in your answer.

(4) (Total 14 marks)